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Abstract

The problem of computing the order of a group, whether or not it is known to be abelian, was
shown by Babai and Szemerédi in 1984 to be impossible to solve classically in polynomial-time.
In his paper Quantum Algorithms for Solvable Groups, John Watrous illustrates a quantum
polynomial-time algorithm for computing the order of solvable groups, a superset of abelian
groups. Most group-theoretic quantum algorithms focus on solving the hidden subgroup problem
– this paper represents a departure from that tradition, and in doing so provides polynomial-
time algorithms for several other important problems, including testing membership, subgroup
equality, and subgroup normality within solvable groups. Watrous’ algorithm also has the
desirable side effect of producing a pure quantum state that is a uniform mixture of the elements
in any specific subgroup of the group, which provides a natural and efficient way to apply existing
group algorithms to factor groups.

1 Introduction

Group theory has, over the past century, become an increasingly important and elegant math-
ematical tool for describing and solving many problems within the sciences. Symmetry groups
in particular have been used by chemists to simplify problems regarding molecular properties by
viewing large, complex molecules in terms of their symmetry [6]. Within physics, Emmy Noether’s
theorem creates a link between the conservation laws of physics and mathematical groups, stat-
ing that every continuous symmetry corresponds to a conserved property; this observation leads
to natural applications of Lie groups to physical systems [7]. Combined with its applications to
cryptography, topology, and almost all other areas of mathematics, group theory is a powerful tool
for understanding and solving larger problems.

Given the importance of the order of a group1, it would be useful to have an efficient method
for producing the order of an arbitrary group. Since no efficient classical algorithm exists, even if
we can be assured that the group is abelian, Watrous’ algorithm, while limited to solvable groups,
provides a means to compute the order of many important groups efficiently. As an important side
effect, the algorithm also allows computation over factor groups, another helpful tool in simplifying
complex systems.

Previous important quantum algorithms mostly focus on the abelian hidden subgroup problem.
This tradition began with Shor’s 1994 algorithm for factorizing integers in polynomial time. While
the algorithm was not explicitly stated in terms of black-box groups, it is easily generalized to a

1One of the main results of finite group theory, Lagrange’s Theorem, states that for any subgroup H of a finite
group G, the order of H is a divisor of G. This result has many important consequences, and is extremely helpful in
understanding the structure of a group (its elements, subgroups, morphic images, etc.)
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finite group framework. The original algorithm requires that the inputs (a and N) be relatively
prime, as otherwise a need not have an order – within a group framework, we are assured that
every element has such an order.

The integer factorization algorithm (specifically finding orders), as well as other early quantum
algorithms like Simon’s algorithm, have since been generalized as solving specific applications of
the hidden subgroup problem:

Let f : G→ X map some group G to some finite set X, with the property that there exists a
hidden subgroup S whereby f(x) = f(y) if and only if xS = yS. Determine S

Many problems can be formalized in terms of hidden subgroups, and so much effort has been
devoted to finding a general, efficient solution for it. There has been some success, as a generalized
polynomial-time algorithm has been developed for the case when G is an abelian group [2], and
with it many other problems have quantum polynomial-time algorithms. There have also been
attempts to generate a polynomial-time algorithm for the general non-abelian case; however, there
has been limited success in this area and it is generally believed that no efficient quantum algorithm
for the non-abelian hidden subgroup exists. Some specific successes include proof of an efficient
query complexity in the general case by M. Ettinger, P. Hoyer, and E. Knill [4], while G. Kuperberg
has a sub-exponential quantum algorithm that solves the hidden subgroup problem for dihedral
groups[5].

By always working in one specific problem space, the possibilities and techniques of quantum
computing are not being explored as well as they could be. In the paper Quantum Algorithms
for Solvable Groups, group theoretic problems outside the scope of the hidden subgroup problem
are examined, an important step for quantum algorithms. While the paper presents multiple
algorithms, the base result is an efficient2 algorithm for computing the order of a solvable group G
(and preparing a uniform superposition of G), effectively proving the following as stated in [1]:

Theorem 1. There exists a quantum algorithm operating as follows (relative to an arbitrary group
oracle). Given generators g1, ..., gk such that G = 〈g1, ..., gk〉 is solvable, the algorithm outputs the
order of G with probability of error bounded by ε in time polynomial in n+log(1/ε) (where n is
the length of the strings representing the generators). Moreover, the algorithm produces a quantum
state ρ that approximates the pure state |G〉 = |G|( − 1/2)

∑
g∈G |g〉 with accuracy ε (in the trace

norm metric).

The paper will follow largely in the same manner as [1], with extra clarity added at points and
high-level descriptions aimed to explain the concepts behind the technical details. For the main
algorithm, the mathematical details will also be thoroughly sketched out, and will follow a slightly
different analysis using an eigenvector basis. This is done both to improve the accuracy of the
analysis, and the clarity of understanding for those more acclimated to the eigenvalue estimate
approach to order finding. Section 2 will detail some group theory background as well as black
box groups, section 3 will describe in detail the main algorithm, and section 4 will consider the
applications proposed and identify some potential issues not detailed in [1]. Finally, section 5 will
serve to conclude the paper and consider the implications on both industry and complexity theory.

2Polynomial-time.
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2 Preliminaries

Before examining the order finding algorithm, we will review some basic concepts necessary for its
understanding. We will assume that readers are familiar with introductory quantum computation,
as seen in An Introduction to Quantum Computing [2]. Additionally, we will assume that the reader
has a cursory knowledge of group theory, though for the sake of accessibility we provide some basic
group theoretic definitions. The group-theoretic definitions used throughout this paper include,
though is not limited to, groups, (normal) subgroups, and generators.

Definition 2. (Group) A group G is a set together with a binary operation that assigns each
ordered pair (a, b) of elements in G an element, denoted ab, in G, and satisfies the following
properties:

1. Associativity. (ab)c = a(bc) for all a, b, c ∈ G.

2. Identity. There exists an element e ∈ G such that ae = a = ea for all a ∈ G.

3. Inverses. For all a ∈ G, there exists an element b ∈ G such that ab = e = ba.

(Subgroup) A subgroup of a group G is a subset H ⊆ G that is closed under the group
operation of G. A subgroup H of G is normal (denoted H CG) if for all a ∈ G, aH = Ha.

The order of a group is the number of elements it contains, denoted |G|. It’s worth noting
that a generating set for a group G fulfills a similar role as a basis (for a vector space) does in
linear algebra; while this is not an entirely accurate definition, it should be sufficient for readers
unfamiliar with group theory to gain a general understanding of their usage.

2.1 The black-box model

As do many other results regarding quantum computation of group-theoretic problems, the algo-
rithm described in [1] works within the context of black-box groups. There are many different
formulations of black-box groups (see appendix 6 in [2] for a discussion of specific models and
implementation issues), so we will just review the basic structure of a black-box group, as well as
results that relate to the order-finding algorithm.

A black-box group consists of a group in which each element is encoded by a unique binary
string, and an oracle that performs the computation of the group operation. A specific black-box
group has an encoding length n, which denotes the (constant) number of bits used to encode any
element within the group – so a black-box group with encoding length n can uniquely encode at
most 2n elements; though not all 2n strings necessarily encode group elements. As an important
note, by this definition all black-box groups are finite groups, so we can assume we are working
with a finite group. Black-box groups are typically described by a set of strings that generate the
group, ie. strings encoding a generating set. This assumption regarding black-box groups will be
particularly important, as the algorithm requires knowledge of a generating set – however, there is
little restriction on the size of the generating set.

The most general group oracle for a black-box group G is the unitary quantum gate UG that
implements the map |g〉|h〉 → |g〉|gh〉. Depending on the group and the operation, different oracles
may be easier or more difficult to implement, but we assume UG is available as it is the most
general and convenient form. Interestingly, it is noted in [2] that an oracle implementing the group
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operation as a bitwise exclusive-or on an ancilla cannot efficiently be used to multiply by the inverse
of a group element, yet it is noted in [1] that the order of a group element can be found using Shor’s
algorithm and then used to find its inverse. While complexity theory would label this as an efficient
method, it may not be plausible in practice to use Shor’s algorithm to implement U−1G .

2.2 Solvable black-box groups

We now define what it means for a group to be solvable. While this is not the simplest definition,
it is equivalent to a more basic definition as in [3].

Definition 3. (Solvable group) A group G is called solvable if there exist g1, ..., gm ∈ G such
that when we let Hi = 〈g1, ..., gi〉, we have {e} = H0 CH1 C ...CHm = G.

With this definition, the forementioned property that every abelian group is solvable does not
immediately arise. It is therefore useful, just to convince us of the solvable property of abelian
groups, to know that an equivalent definition does away with the requirement that Hi = 〈g1, ..., gi〉,
and instead replaces it with the restriction that Hj/Hj−1 is abelian. Since {e} CG in any group,
if G is abelian then so is G/{e}, ie. G is solvable. As in interesting note, it can also be seen that
every group of odd order is solvable [3].

As noted in [1], there are many known facts about black-box solvable groups that will be used
implicitly in the order finding algorithm. In order to be able to use the structure of the chain shown
in the definition of a solvable group, we need a theorem that ensures such a generating set can be
found efficiently.

Theorem 4. Given a group oracle and generators g1, ...gm there exists a polynomial-time Monte
Carlo algorithm for testing whether G = 〈g1, ..., gm〉 is solvable, as well as constructing generators
h1, ..., hkn such that defining Hi = 〈h1, ..., hi〉 gives {e} = H0 CH1 C ...CHkn = G, with k ∈ O(n)

Though the specific details of the above result won’t be described, the idea of the theorem is to
build the derived subgroups3 of G and use their generators to define the Hj ’s. Testing solvability
is then achieved by verifying that the generators of the nth derived subgroup are all the identity.

3 Finding orders of solvable groups

This section will detail the algorithm for computing the order of a solvable black-box group G and
preparing a uniform superposition over the elements of G, as described in Quantum Algorithms for
Solvable Groups[1]. It will, for the most part, follow the analysis given in the paper and provide
extra clarity where possible.

The algorithm hinges on an observation from group theory; by the solvability of G, we know
there exist elements g1, ..., gm ∈ G such that if Hj = 〈g1, ..., gj〉, these Hj ’s form an ascending chain
of normal subgroups with H0 = {e}, Hm = G. Then if we let rj = |Hj/Hj−1| for each 1 ≤ j ≤ m,

we know from basic group theory that rj =
|Hj |
|Hj−i| . Thus

m∏
j=1

rj =
|H1||H2|...|Hm|
|H0||H1|...|Hm−1|

=
|Hm|
|H0|

= |G| (1)

3See either [1] or [3] for a definition – it is not crucial to an understanding of the paper at this point.
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With this observation, it’s clear that if we can calculate the order of each factor group Hj/Hj−1
efficiently, then we have an efficient algorithm to compute the order of G. We note that if we let
r be the smallest positive r such that gr ∈ Hj−1, called the order of gj with respect to Hj−1, then
r = |Hj/Hj−1|4. So we have now reduced finding the order of the group G to finding relative orders
of its generating set. Since we know how to find the order of a group element efficiently using Shor’s
algorithm, we should be able to find this relative order efficiently with some modifications.

Of course, the order finding algorithm requires an initial identity state, which in this case is
the coset Hj , so we also need a way to efficiently prepare copies of each subgroup Hj . It should be
noted at this point that the algorithm given for the construction of such superpositions necessitates
the condition that G is solvable. The basic idea is to use the order of gj with respect to Hj−1
to convert uniform superpositions of Hj−1 to Hj . So at each step, the algorithm will need some
copies of a uniform superposition of Hj−1 to compute rj = |Hj/Hj−1|, which are destroyed in the
process due to measurement, and then additional copies to convert into uniform superpositions of
Hj . While this requires a large number of initial registers in uniform superpositions of H0 (which
is easy to prepare, given that H0 = {e}), it is still polynomial in the number of generating elements
for any desired error probability.

As in the paper, we will sketch separate algorithms for both main components – finding orders
with respect to a subgroup, and preparing uniform superpositions of a subgroup – and then describe
the combined algorithm and analyze its complexity. We will denote the order of g ∈ G with
respect to subgroup H as rH(g), and let the uniform superposition of a finite set S be denoted by
|S〉 = 1√

|S|

∑
g∈S |g〉

3.1 Finding orders with respect to a subgroup

Computing the order of g with respect to H can be accomplished by Shor’s approach to order
finding, replacing the initial state

∑2n−1
x=0 |x〉|1〉 with

∑2n−1
x=0 |x〉|H〉 and then applying the reversible

map |x〉|y〉 → |x〉|gxy〉. It will be seen that if we begin with the above states, then follow the
remainder of the algorithm essentially verbatim, the result is rH(g). This process will be used
within the main algorithm to find the order of gj with respect to Hj−1 for each j.

The key observation behind this modification is that Shor’s algorithm can be generalized as a
method to compute the period r of some computable, periodic function f . In the case of order
finding and integer factorization, f(x) = axmodN , so that the period r is the order of a; on the
other hand, if we let f(x) = gxH, the period r is the lowest positive integer such that gxH = H and
thus gx ∈ H. However, care must be taken as Shor’s algorithm requires that the states |f(x)〉, |f(y)〉
are orthogonal if r - x − y – fortunately, giH ∩ gjH = {e} (so |giH〉 and |gjH〉 are orthogonal)
whenever giH 6= gjH.

While the paper uses Shor’s algorithm to provide the method, and defers the details of the
analysis to external sources, we’ll sketch the method using the equivalent eigenvalue estimation
approach to order finding [2], as the analysis appears cleaner. We assume we are working with a
black-box group G having encoding length n, and let N ∈ O(2n)5 be determined later to achieve
a desired error probability. Suppose H is some subgroup of G, g 6∈ H be a group element, and

4Every element of Hj can be written as gijg
′ for some g′ ∈ Hj−1, so the factor group Hj/Hj−1 consists of the

cosets gijHj−1, exactly r of which will be unique
5The exponential bound may appear troublesome, but it is known that the QFTN can be implemented in time

polynomial in logN [2], thus we still have a polynomial-time algorithm
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r = rH(g). Also, we let Ug implement the map |h〉 → |gh〉 for any g, h ∈ G. This circuit can be
implemented classically and efficiently via repeated squaring, and is reversible on the basis that g
is a group element so it has an inverse.

Before we describe the actual algorithm, we notice that as in the eigenvalue estimation approach,
if we define

|µk〉 =
1√
r

r−1∑
s=0

e−2πi
k
r
s|gsH〉 (2)

|µk〉 is an eigenvalue of Ug – ie. Ug|µk〉 = 1√
r

∑r−1
s=0 e

−2πi k
r
s|gs+1H〉 = e2πi

k
r |µk〉. However, if we

have a uniform superposition of such states |µk〉, then we see

1√
r

r−1∑
k=0

|µk〉 =
1

r

r−1∑
s=0

(

r−1∑
k=0

e−2πi
k
r
s|gsH〉) =

1

r

r−1∑
k=0

|g0H〉 = |H〉 (3)

since
∑r−1

k=0 e
−2πi k

r
s|gsH〉 = 0 if s 6= 0.

Finally we sketch the algorithm:

1. Begin by preparing the state |0〉⊗n|H〉 = 1√
r

∑r−1
k=0 |0〉⊗n|µk〉

2. Apply QFTN to the control register to compute the state 1√
rN

∑r−1
k=0

∑N−1
x=0 |x〉|µk〉

3. Apply c− Uxg to the control and target registers: 1√
rN

∑r−1
k=0

∑N−1
x=0 e

2πi k
r
x|x〉|µk〉

4. Apply QFT−1N to the control register and measure (the control register) to obtain an estimate
b
N of k

r for some random 0 ≤ k < r

The remainder follows essentially identically to the analysis in [2], so it will be described only
briefly. With high probability, b

N is a good estimate, and if we let N = 22n+O(log(1/ε)), using the
continued fraction method we find, with probability 1 − ε, relatively prime integers u, v such that
u
v = k

r . We then repeat the algorithm O(log(1/ε)) times and compute the least common multiple
of the v’s to obtain r with probability 1− ε.

3.2 Building uniform superpositions over subgroups

Building a uniform superposition over a subgroup 〈g〉H is achieved in this method effectively by
applying the order finding algorithm given above (using QFTrH(g) instead of QFTN ) on a large

number of copies of |H〉. Then, we find one register that contains all the (rH(g))th roots of unity,
and use it correct the rest of the registers, discarding it afterwards. Sepcifically, the algorithm
converts copies of |H〉 into copies of |〈g〉H〉 for some g. We note that this requires H to be normal
in |〈g〉H〉, as the internal direct product G = HK of two groups H,K may not be a group if either
H or K is not normal in G [3]; the solvability of G arises from this requirement. In terms of the
actual algorithm, this method is used to convert l copies of |Hj−1〉 into l − 1 copies of |〈gj〉Hj−1〉,
which is equal to |Hj〉 given the definition Hj = 〈g1, ..., gj〉.
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We now account the method, assuming we have calculated r = rH(g), and have l copies of
|H〉 = 1√

r

∑r−1
k=0 |µk〉 as defined in the section above6. First prepare l copies of the state |0〉⊗r|H〉.

Then, similar to calculating the order rH(g), we apply QFTr to the control register, followed by
c− Uxg to both registers, then finally QFT−1r . This process results in the state

1√
r

r−1∑
k=0

|k〉|µk〉 =
1

r

r−1∑
s=0

r−1∑
k=0

e−2πi
ks
r |k〉|gsH〉 (4)

Next, measure the control registers of all l copies, denoting the results k1, ..., kl, and labeling the

resulting states |ψi〉 = 1√
r

∑r−1
s=0 e

−2πi kis
r |gsH〉. We pick one value j such that kj is relatively prime

to r. We can assure at least one such kj exists with probability at least 1 − ε by choosing l ∈ Ω
((log log r)(log1

ε ))
7.

The last part of the algorithm applies the insight that |ψj〉 is an eigenvector of the map Mgxh :
|ω〉 → |gxhω〉. Since |ψj〉 is in a superposition of all elements of 〈g〉H, multiplication by gxh simply
shuffles their amplitudes. Specifically, if s′ = s + x mod r, then s + mn = s′ − x for some integer
m, so

e2πi
skj
r |gs′H〉 = e2πi

(s′−x)kj
r |gs′H〉 = e2πi

−xkj
r e2πi

s′kj
r |gs′H〉 (5)

ie. Mgxh|ψj〉 = e2πi
−xkj

r |ψj〉. So, for each i 6= j let c be some integer satisfying c ≡ kikj mod r,
and for each state |gsh〉 in the first register, apply M(gsh)c to the second register in |ψi〉|ψj〉. By
the above observation, this results in the state

1√
r|H|

r−1∑
s=0

∑
h∈H

e2πi
ski−sckj

r |gsh〉|ψj〉 =
1√
r|H|

r−1∑
s=0

∑
h∈H

e2πi
ski−ski−smr

r |gsh〉|ψj〉 = |〈g〉H〉|ψj〉 (6)

So we have converted the l − 1 states |ψi〉, i 6= j to the state |〈g〉H〉 as required

3.3 Completing the algorithm

Now that we have separate (polynomial-time) algorithms for both (i) computing the order rH(gj)
of gj with respect to Hj−i, and (ii) converting l copies of |Hj−i〉 to l−1 copies of |〈gj〉Hj−1〉 = |Hj〉,
we can sketch the composition of the entire algorithm. Recall that H0 = e,Hm = G

1. Begin with k(m+1) copies of |H0〉 where k ∈ O((log n)(log m
ε )) for a desired error probability,

ε. Set j:=1

2. Using k − 1 copies of |Hj−1〉, compute rj = rHj−1(gj)

3. Convert the remaining copies of |Hj−1〉 to |Hj〉, losing one copy in the process to leave
k(m+ 1)− jk copies left

4. if j = m, output
∏m
j=1 rj ; else set j := j + 1 and return to (2).

6For the sake of continuity, the analysis follows in the eigenvalue basis, even though we will end up with the same
state that arises from Shor’s analysis and described in the paper, up to relabeling.

7This probability, as given in [1], was without proof or citation. However, it is noted that a modified version of
the algorithm does not require there to be a relatively prime k; it would likely be helpful in practice to pursue such
an algorithm, so as to minimize the error probability in exchange for more complex computations.
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As detailed in [1], by choosing k ∈ O((log n)(log m
ε )), the algorithm errs with probability at

most ε. Using O(log(2m/ε)) copies of |Hj−1〉 computes rj with error probability at most ε/2m,
and since O(log(2m/ε)), the total error in computing all m rj ’s is at most m ε

2m = ε/2. Similarly,
since n ∈ O(log r), we see that k ∈ O((log logr)(log 1

ε/2m)) – since for each j, at least k states are

being converted, the total error in converting the states is at most m ε
2m = ε/2. So the total error

is at most ε/2 + ε/2 = ε.

Watrous has therefore detailed a polynomial-time algorithm for computing the order of a solv-
able group G and creating a uniform superposition over the elements of G.

4 Applications

The general and unique nature of this algorithm allows a number of other group-theoretic problems
to be solved efficiently (for solvable groups). While the advantages of knowing the order of a
group are well known [3], the algorithm also allows computations over factor groups, an important
mathematical tool for simplifying complex problems. However, these algorithms are not formally
detailed, and as such there are issues that could arise if one were to formalize them.

4.1 Applications of order finding

Membership testing in a black-box solvable group reduces very naturally, through simple group
theory, to solving the order of a group. If we consider the generating set {gi} of some black-box
solvable group G and add another element h to its generating set (roughly equivalent to creating
the internal direct product 〈h〉G), the resulting group will (a.) have the same order if h ∈ G, or
(b.) strictly increase in order otherwise. So by computing the order of both groups and comparing
the two, we have computed in polynomial time with certainty whether h ∈ G. Important to note is
that if the group generated by {gi} and h is not solvable, as can be computed in polynomial time,
then we instantly know h 6∈ G.

While this is a useful theoretical result, the formulation of a black-box group given earlier
raises question about its implementation. Previously, we were only concerned with computation on
elements of a black-box group G, and so the behaviour of the group oracle on an invalid encoding
was left undefined; by running the algorithm on a possibly invalid encoding h, the algorithm is not
necessarily well-defined. While an error due to an invalid encoding would, in most cases, likely be
easy to detect (for example, if an invalid encoding causes the oracle to produce random states, it’s
unlikely that an algorithm relying on specific states would complete correctly), the behaviour of a
specific black-box on invalid encodings still needs to be defined and accounted for to properly prove
a polynomial-time algorithm. It is, however, not the main focus of the paper, and it is successful
in sketching out a possible method for membership testing.

Other problems reducible to order finding (and membership testing) in solvable groups include
subgroup testing, normality testing, and group equality (ie. equality of generating sets). They all
involve computing the orders of different generating sets and comparing them, based on results
from group theory. There are likely many more such problems that could be solved through order
finding and membership testing, as many proofs and exercises in group theory are solved using
group orders.

This algorithm also suggests succinct classical certificates for verifying that a given integer d
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divides the order of a black-box solvable group G. A possible certificate would be composed of the
p-subgroups of G for all prime divisors p of d, and then verification would proceed by testing whether
each p-subgroup is in fact a subgroup of G. However, this particular certificate requires that G is
solvable for its use of the order-finding algorithm; an assumption that trivializes the problem in any
case, as we have a polynomial-time quantum algorithm for computing and factorizing |G| (using
Shor’s algorithm to factorize |G|). Watrous has also previously shown that there exists a succinct
quantum certificate for the same problem in his paper Succinct quantum proofs for properties of
finite groups.

4.2 Applications of uniform superpositions over subgroups

As mentioned earlier, an important consequence of the order finding algorithm is that it provides
a means for building uniform quantum superpositions of specific subgroups. These uniform super-
positions can then be used to conveniently express elements of factor groups, which in the case of
a solvable group will be abelian (since the subgroup the is built necessarily exists in a chain as per
the definition of a solvable group). Since we can use the same group oracle to perform the coset
multiplication operation, standard efficient techniques for computing properties of abelian groups,
of which there are many, can be applied to this factor group.

The specific example given determines the classification of a factor group G/H, according to the
finite theorem of abelian groups [3]. A high-level sketch of the method follows: assuming we have
prepared the state |H〉 (using the order finding algorithm), and computed the LCM N of the orders
of the generating set g1, ..., gk of G (using Shor’s algorithm), we can prepare the superposition of
all |a1...ak〉|ga11 ...g

ak
k H〉 for 0 ≤ ai < N . By applying QFTN on each of the first register k registers,

we can then cancel the amplitudes so that measuring them yields b1...bk where ga11 ...g
ak
k ∈ H.

This particular problem was given as an example of the possible use of the ability to generate a
uniform superposition over a subgroup, though many more possible uses exist. The approach has
since been applied by G. Ivanyos, F. Magniez, and M. Santha to perform a constructive membership
test in G using a normal, solvable subgroup H, and to find Sylow subgroups of G [11].

Kapovich, Myansnikov, Schupp, and Shpilrain since proven that certain black-box group prob-
lems, specifically membership within subgroups and conjugacy (and thus subgroup normality), are
classically in P [10]. In addition, within specific domains such as networks,

5 Conclusion

So we have now detailed the polynomial-time quantum algorithm, formulated in Quantum Algo-
rithms for Solvable Groups, for computing the order of a solvable group G, and preparing a uniform
superposition over G. We have also examined the claims of the problems reducible to this algorithm,
and identified a few possible issues with them.

One natural question this paper raises, is whether these methods can be adapted to non-solvable
groups. The solvability of G is not strongly enforced in the algorithm, and it is plausible that a
method of building uniform subgroups could be determined that does not rely on the normality
assumption. Care must be taken, however, as a surgical removal of the solvable assumption may
break other implicit assumptions made in the algorithm. The paper itself is concluded by suggesting
that if generators of the Sylow subgroups of G could be computed, the order finding algorithm could
be run on these (solvable) subgroups; it is not known to the author whether any papers taking this
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approach have yet been published.
Since this paper was published in 2001, there have been further advancements in algorithms

for black-box groups. One interesting results, proven in 2004 by Kapovich, Myansnikov, Schupp,
and Shpilrain, is that certain black-box group problems, including membership within subgroups
and conjugacy (and thus subgroup normality), are classically in P for a large class of groups
(potentially larger than solvable groups)[10]. In this way, the proposed applications of the main
algorithm appear somewhat less helpful in hindsight. In addition, we can observe that within many
specific domains and industrial applications, such as permutation groups representing computer
networks, there exist efficient heuristic algorithms making use of theorems like the stabilizer-orbit
theorem to determine group orders [8].

Yet, Watrous’ algorithm still represents an important step towards finding efficient algorithms
for general group theoretic problems. Given that the order of a solvable group is hard to compute
classically, it serves as further evidence that the a quantum computation model is strictly more
powerful than a classical computation model.
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